
Hans-Petter Halvorsen

https://www.halvorsen.blog

Database Systems
Overview

• Introduction
• Database Modelling and Design
• SQL Server
• Datalogging using LabVIEW
• Data Monitoring Visual Studio/C#
–WinForm Desktop Application
–ASP.NET Core Web Application

Table of Contents

Hans-Petter Halvorsen

https://www.halvorsen.blog

Introduction

Table of Contents

Database Systems
• A database is a structured way to store lots of information.
• The information is stored in different tables.
• “Everything” today is stored in a database today, like bank systems,

information in web pages and data used by AI, etc.
• In the industry we have, e.g., Datalogging and Monitoring Systems and

SCADA Systems.
• Some popular database systems today are Oracle, MySQL, MariaDB and

Microsoft SQL Server.
• Typically you start by designing your database and create a so-called

Entity Relationship Diagram (ERD).
• There exist many software tools for creating ER diagrams like DB

Designer, Lucidchart and erwin Data Modeler.

Datalogging and Monitoring

Database
Logging

App
Monitoring

App
LabVIEW

SQL Server
Visual Studio/C#Temperature

Sensor

Data Storage

Here you see the core concept of a Datalogging and Monitoring System:

On the next pages you will see different User Case Scenarios for such a System, e.g.,
Home Automation System, Building Monitoring System, etc.

Databas
e

Logging
App

Monitoring
App

Logging
App

Logging
App

Building A
Floor A.3

Room A-205

Sensor T.A.1

Building B

Floor A.2

Floor A.1

Room A-307

Room A-101

Sensor T.A.2

Sensor T.A.3

In the Monitoring App you can see real-time
data and monitor historical data from the
different sensors in the different buildings and
rooms.

A Database that stores
all the data from the
system

The Logging App is in the different rooms where you want to see and log data from different sensors.

Datalogging and Monitoring

Use Case Scenario (Alt1)

Databas
e

Logging
App

Monitoring
App

Logging
App

Logging
App

Assume that you can have multiple Data Logging
Applications that are in different places inside multiple
buildings (e.g., office buildings, factory, etc.) which are
logging Temperature Data (or Data from other Sensors, CO2,
etc.) and store the Data inside a common Database.

Then a person can sit somewhere and Observe
(Real-Time Data) and Monitor (Historical Data) the
Data from the different Sensors in the different
Buildings and Rooms using the Monitoring App.

Building A

Floor A.3

Room A-205

Sensor T.A.1

Building B

Floor A.2

Floor A.1

Room A-307

Room A-101

Sensor T.A.2

Sensor T.A.3

“Building Monitoring System”

Use Case Scenario (Alt2)

Database

Monitoring
App

Home#1

Home#2

Assume each Sensor has a separate Logging App that Log
data from the Sensor and the send Data to a central
Database

Living Room (Temperature, Thermistor)

Bedroom1 (CO2)
Garden (Rain)

Attic (Temperature, PT100)

Basement (Air Pressure)

Kitchen (Temperature,
PT100)

“Home Automation System”

Database

Monitoring
App

Home#1

Home#2

Living Room (Temperature, Thermistor)

Bedroom1 (CO2)
Garden (Rain)

Attic (Temperature, PT100)

Basement (Air Pressure)

Kitchen (Temperature,
PT100)

Microsoft
SQL Server

Database

Database Design &
Modelling

SQL Server Management Studio
Create Tables

Database Management

We can create Applications in LabVIEW
& Visual Studio that Writes and Reads
Data to/from the Database.

Database Design and Imlementation

Data Logging Data Monitoring

Temperature
Sensor

Database

Trigger(s)

Calculate Average, Max, Min Temperature Data
Convert Temperature to Celsius/Fahrenheit

Stored
Procedure(s)

Views and/or
Stored
Procedure(s)

DAQmx Driver

System Overview

Tables

Logging
App

Monitoring
App

Views

Stores Procedures

Triggers

Table Design

Network

Database

System Overview

Temperature Sensor

Hans-Petter Halvorsen

https://www.halvorsen.blog

Database Modelling
and Design

Table of Contents

Primary Key Primary Key Foreign Key

Table Name Table Name

Column
Names

ER Diagram

ER Diagram (Entity-Relationship Diagram)
• Used for Design and Modeling of Databases.
• Specify Tables and relationship between them (Primary Keys and Foreign Keys)

Primary Key Primary Key Foreign Key

Table Name

Table Name

Relational Database. In a relational database all the tables have one or more relation with each other using Primary
Keys (PK) and Foreign Keys (FK). Note! You can only have one PK in a table, but you may have several FK’s.

Column
Names

Example:

ER Diagram

• Tables: Use upper case and singular form in table names – not plural, e.g.,
“STUDENT” (not “students”)

• Columns: Use Pascal notation, e.g., “StudentId”
• Primary Key:

• If the table name is “COURSE”, name the Primary Key column “CourseId”,
etc.

• “Always” use Integer and Identity(1,1) for Primary Keys. Use UNIQUE
constraint for other columns that needs to be unique, e.g. “RoomNumber”

• Specify Required Columns (NOT NULL) – i.e., which columns that need to have
data or not

• Standardize on few/these Data Types: int, float, varchar(x), datetime, bit
• Use English for table and column names
• Avoid abbreviations! (Use “RoomNumber” – not “RoomNo”, “RoomNr”, ...)

Database - “Best Practice”

• Typically to start by creating the overall Specifications
and Design for your System.

• Them Design the Database Tables using an ERD
software and create a SQL Script.

• Then implement the Tables in SQL Server, e.g., using a
SQL Script generated from the ERD software.

• Then Create necessary Views, Stored Procedures and
Triggers within the SQL Server Management Studio. It
is recommended that you save these as separate SQL
Files.

Database System

Hans-Petter Halvorsen

https://www.halvorsen.blog

SQL Server

Table of Contents

Database Implementation and Structured Query Language (SQL)

SQL Server Database
Engine and Repository SQL Server Management Studio

Note! These are 2 separate
modules you need to install

A graphical interface to the Database Engine where
you can create tables and manipulate data, etc.

The Data Storage

1
2

Microsoft SQL Server

• Start by Design the Database Tables using an ERD
software and create a SQL Script.

• Implement the Tables in SQL Server, e.g., using a
SQL Script generated in the ERD software.

• Create necessary Views, Stored Procedures and
Triggers within the SQL Server Management Studio.
– Put each of them into a .sql file.
– You may wait to create them until you need them in the

LabVIEW or C# Code.

Database Design and Implementation

Write your Query here

The result from your Query

Your Database

Your
Tables

Your SQL Server

2

3

4

5

1

Microsoft SQL Server Management Studio

Database Design in SQL Server Management Studio

It is also possible to Design
the Tables using SQL Server

Management Studio

Database Design and Implementation

Database
Design

SQL Server
Management

Studio

Table
Script.sql

Create Table Script
Import Table Script

Need to make some improvements? Update the Table Design and import the Tables again

It is not recommended
to make changes here

• insert into STUDENT (Name , Number, SchoolId)

values ('John Smith', '100005', 1)

• select SchoolId, Name from SCHOOL

• select * from SCHOOL where SchoolId > 100

• update STUDENT set Name='John Wayne' where StudentId=2

• delete from STUDENT where SchoolId=3

Query Examples:

We have 4 different Query Types: INSERT, SELECT, UPDATE and DELETE

SQL – Structured Query Language

• Views: Views are virtual tables for easier access
to data stored in multiple tables.

• Stored Procedures: A Stored Procedure is a
precompiled collection of SQL statements. In a
stored procedure you can use if sentence,
declare variables, etc.

• Triggers: A database trigger is code that is
automatically executed in response to certain
events on a particular table in a database.

Views, Stored Procedures and Triggers

• A Database View is a “virtual” table that can
contain data from multiple tables

• You probably need to Create and Use one or
more Database Views to get Data from the
Database, both in the Data Logging App and Data
Monitoring App

• It is recommended that you wait to create them
until you need them in the LabVIEW or C# Code

Database Views

IF EXISTS (SELECT name

 FROM sysobjects

 WHERE name = 'CourseData'

 AND type = 'V')

 DROP VIEW CourseData

GO

CREATE VIEW CourseData

AS

SELECT

SCHOOL.SchoolId,

SCHOOL.SchoolName,

COURSE.CourseId,

COURSE.CourseName,

COURSE.Description

FROM

SCHOOL

INNER JOIN COURSE ON SCHOOL.SchoolId = COURSE.SchoolId

GO

You can Use the View as an
ordinary table in Queries:

A View is a “virtual” table that can
contain data from multiple tables

Inside the View you join the
different tables together using
the JOIN operator

The Name of the View

Create View:

Using the View:

This part is not necessary – but if you make any
changes, you need to delete the old version
before you can update it

select * from CourseData

1

2

Database Views

IF EXISTS (SELECT name

 FROM sysobjects

 WHERE name = '<ViewName>'

 AND type = 'V')

 DROP VIEW <ViewName>

GO

CREATE VIEW <ViewName>

AS

SELECT

<TableName>.<ColumnName>,

<TableName>.<ColumnName>,

<TableName>.<ColumnName>,

<TableName>.<ColumnName>,

<TableName>.<ColumnName>

FROM

<TableName1>

INNER JOIN <TableName2> ON <TableName1>.<PrimKeyColumnName1> = <TableName2>.<PrimKeyColumnName2>

GO

Copy to SQL Server Management Studio, save as a
SQL File (.sql) as the same name as the View you are
going to create. Store all your files on your hard drive.

Database View Template

Typically, you need some Stored Procedures:
• The Datalogging App should typically use a Stored

Procedure to save Measurement Data to the
Database.

• The Datalogging App should typically use a Stored
Procedure to save Configuration Data to the Database.
– Logging Interval
– Unit (Celsius or Fahrenheit)

• It is recommended that you wait to create them until
you need them in the LabVIEW or C# Code

Stored Procedures

IF EXISTS (SELECT name
 FROM sysobjects
 WHERE name = 'StudentGrade'
 AND type = 'P')
 DROP PROCEDURE StudentGrade
GO

CREATE PROCEDURE StudentGrade
@Student varchar(50),
@Course varchar(10),
@Grade varchar(1)

AS

DECLARE
@StudentId int,
@CourseId int

select @StudentId = StudentId from STUDENT where StudentName = @Student

select @CourseId = CourseId from COURSE where CourseName = @Course

insert into GRADE (StudentId, CourseId, Grade)
values (@StudentId, @CourseId, @Grade)
GO

execute StudentGrade 'John Wayne', 'SCE2006', 'B'

A Stored Procedure is like a Method in C# -
it is a piece of code with SQL commands
that do a specific task – and you reuse it

Input Arguments
Internal/Local Variables

Procedure Name

SQL Code (the “body” of the
Stored Procedure)

Note! Each variable starts with @

Create Stored Procedure:

Using the Stored Procedure:

This part is not necessary – but if you make any
changes, you need to delete the old version before
you can update it

1

2

Stored Procedures

IF EXISTS (SELECT name

 FROM sysobjects

 WHERE name = '<StoredProcedureName>'

 AND type = 'P')

 DROP PROCEDURE <StoredProcedureName>

GO

CREATE PROCEDURE <StoredProcedureName>

@<InputVariable1> <DataType>,

@<InputVariable2> <DataType>

AS

DECLARE

@<InternalVariable1> <DataType>,

@<InternalVariable2> <DataType>

select @<InternalVariable1> = <ColumnName> from <TableName> where <ColumnName> =

@<InputVariable1>

insert into <TableName> (<ColumnName1>, <ColumnName2>, ...) values (@<InternalVariable1>,

@<Inputvariable1>, ...)

GO

Copy to SQL Server Management Studio,
save as a SQL File (.sql) as the same
name as the SP you are going to create.
Store all your files on your hard drive.

Stored Procedure Template

You may need one or more Triggers that do, e.g., the following:
• Convert Temperature to Celsius/Fahrenheit

– E.g., If Unit=Celsius, the Trigger should Convert Temperature Data to
Fahrenheit.

– E.g., If Unit=Fahrenheit, the Trigger should Convert Temperature Data
to Celsius.

– Both Celsius and Fahrenheit values should probably be stored in the
Database for easy access later in Monitoring App.

• Calculate Average, Max, Min Temperature Data
– The Trigger should calculate and store Average(Mean), Max and Min

Temperature Data into the Database.
• You may wait to create them until you need them in the LabVIEW

or C# Code.

Database Triggers

IF EXISTS (SELECT name

 FROM sysobjects

 WHERE name = 'CalcAvgGrade'

 AND type = 'TR')

 DROP TRIGGER CalgAvgGrade

GO

CREATE TRIGGER CalcAvgGrade ON GRADE

FOR UPDATE, INSERT, DELETE

AS

DECLARE

@StudentId int,

@AvgGrade float

select @StudentId = StudentId from INSERTED

select @AvgGrade = AVG(Grade) from GRADE where StudentId = @StudentId

update STUDENT set TotalGrade = @AvgGrade where StudentId = @StudentId

GO

A Trigger is executed when you
insert, update or delete data in a
Table specified in the Trigger

Inside the Trigger you
can use ordinary
SQL statements,
create variables, etc.

Name of the Trigger

Specify which Table the
Trigger shall work on

Internal/Local Variables
SQL Code
(The “body”
of the Trigger)

Specify what kind of operations the Trigger
shall act on

Note! “INSERTED” is a temporarily table containing the latest inserted data, and it is very handy to use inside a trigger

This part is not necessary – but if
you make any changes, you
need to delete the old version
before you can update it

Database Triggers

IF EXISTS (SELECT name

 FROM sysobjects

 WHERE name = '<TriggerName>'

 AND type = 'TR')

 DROP TRIGGER <TriggerName>

GO

CREATE TRIGGER <TriggerName> ON <TableName>

FOR UPDATE, INSERT, DELETE –-Delete the ones not needed

AS

DECLARE

@<InternalVariable1> <DataType>,

@<InternalVariable2> <DataType>

select @Variable1 = Column1 from INSERTED

select @Variable2 = AVG(Column2) from TABLE where Column1 = @Variable1

update TABLE set Column3= @Variabl2e where Column1= @Variable1

GO

Copy to SQL Server Management Studio, save as a SQL File
(.sql) as the same name as the Trigger you are going to
create. Store all your files on your hard drive.

Trigger Template

Hans-Petter Halvorsen

https://www.halvorsen.blog

Datalogging
using LabVIEW

Table of Contents

Microsoft
SQL Server
Database

Database Design
& Modelling

Stored Procedure(s)DAQ

Triggers

Calculate Average, Max, Min Temperature Data

Convert Temperature to Celsius/Fahrenheit

Create Stored Procedure(s)
and Triggers in SQL Server

Data

Datalogging using LabVIEW

Temperature
Sensor

Temperature Data:
30

Exit

0

Datalogging App

℃

The Temperature Data from the Sensors(s) should typically be stored in the Database

Show Temperature in
Celsius or Fahrenheit
depending on the
Configuration

Chart ConfigurationTab Control

Chart

Time

LabVIEW HMI Example

TC-01-1Select Sensor:

28 ℃

Historical Data

Real-Time Data

Exit

Datalogging App

The Temperature Data from the Sensors(s) should be stored in the Database

Chart Configuration

2
Logging Interval:

sec.

Celsius
Unit:

Save

Tab Control

E.g., If Unit=Celsius, the
Trigger should Convert
Temperature Data to
Fahrenheit

E.g., If Unit=Fahrenheit, the
Trigger should Convert
Temperature Data to Celsius

Numeric Control

Combo Box

Buttons

Use a Stored Procedure to
Save Data to the Database

LabVIEW HMI Example

https://www.halvorsen.blog/documents/technology/database/database_labview.php

For Easy Database Communication with LabVIEW

Download for free here:

SoftwareSoftwareLabVIEW SQL Toolkit

https://www.halvorsen.blog/documents/technology/database/database_labview.php

40

Example 1: Get Data from Database into
LabVIEW:

Example 2: Write Data to Database from
LabVIEW:

Easy Access to Database Systems from LabVIEW

Your ODBC
Connection

2D Table with Data

1

Query

Query

2 3

1 2 3

LabVIEW SQL Toolkit Example

• Alt 1: Use ODBC
– Setup your Database connection using a Wizard

(“ODBC Data Source Administrator”)

• Alt 2: Use Connection String directly
– Alt 2.2: SQL Server Authentication:

PROVIDER=SQLOLEDB; DATA SOURCE=COMPUTERNAME\SQLEXPRESS; DATABASE=MEASUREMENTS; UID=sa; PWD=xxx;

– Alt 2.1: Windows Authentication:
Data Source=<dbserver>;Initial Catalog=<dbname>;Trusted_Connection=True

See Examples on next slides...

Connect to Database

ODBC (Open Database Connectivity) is a standardized interface (API) for accessing the database from a client. You
can use this standard to communicate with databases from different vendors, such as Oracle, SQL Server, etc. The
designers of ODBC aimed to make it independent of programming languages, database systems, and operating
systems.

Control Panel → Administrative Tools → Data Sources (ODBC)

We will use this ODBC Connection
later in LabVIEW to open the
Database Connection from LabVIEW

Note! Make sure to use the 32-bit
version of the ODBC Tool!

ODBC

43

The Name of your
SQL Server

The Name of your
ODBC
Connection

Use either Windows
or SQL Server
authentication
(Windows is
simplest to use!)

Select the Database
you are using

Test your
connection to
see if its works

ODBC – Step by Step

Easy Access to Database Systems from LabVIEW

Alternative Solution: Type in the Connection String for your Database

Note! When using this method, you don’t need to create an ODBC Connection first!

Your Password for the sa user

Your SQL Server Instance

Type your Database here

Your SQL Query

LabVIEW SQL Toolkit Example

45

You should use a Stored
Procedure for saving the
Temperature Data to the Database

LabVIEW SQL Toolkit Example

“%.;” in front of the string
means that “.” will be
used as Decimal Point.

“%2.1f” means that this is replaced with the value
that comes from the Sensor with one decimal value.
“f“ means it is a floating-point value.

If we want to save input data from the user, we
can use the “Format Into String” function

execute CreateBook ‘Lord of the Rings', ‘J.R.R. Tolkien', Wiley', '32-2-333-56', 'Fantasy'

The %s operator will be replaced by the text from
the TextBox on the Front Panel. For Numbers we
can use %d (Integer) or %f for Floating-point
Number.

Resulting SQL Query:

GUI/HMI

Code:2

1

3
Example of Executing a
Stored Procedure

LabVIEW SQL Toolkit Example

Hans-Petter Halvorsen

https://www.halvorsen.blog

Data Monitoring using
Visual Studio/C#

Table of Contents

Microsoft
SQL Server
Database

Stored Procedure(s)
View(s)

The Data Monitoring App is typically a Desktop Application
(Windows Forms App) or a Web Application (ASP.NET Core App)

Data Monitoring using Visual Studio/C#

Date & Time Value [C] Value [F]

2016.03.22 14:45 22 71.6

...

...

...

Temperature Data:

0

30

Data Monitoring App

Average:

Min:

Max:

22

10

26

℃

℃

℃

You should get
the Data from
the Database

℃

TextBoxesLabels

DataGridView

Chart

Typically, you get
Data from the
Database using
Views and/or
Stored Procedures

Time

Data Monitoring Example

Example of different Alternatives:
1. Windows Form Desktop Application

– This is the “safe” choice and the recommended
choice for most of you

2. ASP.NET Core Web Application
– This is the “future” - for those who wants to learn

something new and add an extra challenge.

Data Monitoring Application

Hans-Petter Halvorsen

https://www.halvorsen.blog

Windows Forms
Desktop Application
Table of Contents

using System;
using System.Collections.Generic;
using System.Configuration;
using System.Data.SqlCl ient;

namespace MonitoringApp.Classes
{

public class SensorData
{

public int SensorDataId { get; set; }
public double SensorValue { get; set; }
public DateTime SensorDateTime { get; set; }

public List<SensorData> GetSensorData()

{

string connect ionString = ConfigurationManager.ConnectionStrings["DatabaseConnectionString"].Connect ionString;

List<SensorData> sensorDataList = new List<SensorData>();

SqlConnection con = new SqlConnection(connect ionString);

string selectSQL = "select SensorDataId, SensorValue, SensorDateTime from GetSensorData where SensorName ='TC-01'";

con.Open();
SqlCommand cmd = new SqlCommand(selectSQL, con);
SqlDataReader dr = cmd.ExecuteReader();

if (dr != null)

{
while (dr.Read())
{

SensorData sensorData = new SensorData();

sensorData.SensorDataId = Convert.ToInt32(dr["SensorDataId"]);
sensorData.SensorValue = Convert.ToDouble(dr["SensorValue"]);
sensorData.SensorDateTime = Convert.ToDateTime(dr["SensorDateTime"]);

sensorDataList.Add(sensorData);

}
}
con.Close();
return sensorDataList;

}

}
}

C# Database Example
This example retrieves data

from a specific sensor

public Form1()
{

InitializeComponent();

timer1.Start();
}

private void timer1_Tick(object sender, EventArgs
e)

{
… //Read from DB
… //Formatting
… //Plot Data

}

Timer Event:

Initialization:

Properties:

Structure your Code properly!!
Define Classes and Methods
which you can use here

In Visual Studio you may want to use a Timer
instead of a While Loop in order to read values at
specific intervals.

You may specify the Timer
Interval in the Properties
Window

Select the “Timer”
component in the Toolbox

Double-click on the Timer object
to create the Event

2

3

4

1
Timer

Hans-Petter Halvorsen

https://www.halvorsen.blog

ASP.NET Core
Web Application

Table of Contents

ASP.NET Core
• ASP.NET Core is a framework for web development.
• ASP.NET Core is based on .NET and C#.
• What is the difference between ASP.NET Core and .NET frameworks?

– ASP.NET Core is specifically designed for web development, while the .NET
framework covers a broader range of application types, including Windows
desktop, mobile, and web applications.

• In ASP.NET Core Razor code and layout are separated into 2 files; The
layout file has the extension “. cshtml”, and the code-behind file has
the extension “. cshtml.cs” (where “cs” is short for C#).

• The layout files “. cshtml” use something called Razor syntax and are
mixed with HTML.

• ASP, ASP.NET and ASP.NET Core is made by Microsoft.
• Homepage: https://dotnet.microsoft.com/en-us/apps/aspnet

https://dotnet.microsoft.com/en-us/apps/aspnet

ASP.NET Core Web App with Razor

ASP.NET Core has many different applications and has
templates for different application types, services and purposes.

This is the recommended
Template for ASP.NET
Core Web App with Razor

NuGet – Database Communication

Company Class
using Microsoft.Data.SqlClient;

namespace CompanyApp.Models

{

public class Company

{

public int companyId { get; set; }

public string? companyName { get; set; }

public string? webSite { get; set; }

public List<Company> GetCompanies()

{

string connectionString = "Data Source=SERVERNAME\\SQLEXPRESS;Initial Catalog=WORK;Integrated

Security=True;TrustServerCertificate=True";

SqlConnection con = new SqlConnection(connectionString);

con.Open();

string sqlQuery = "select CompanyId, CompanyName, WebSite from COMPANY";

SqlCommand cmd = new SqlCommand(sqlQuery, con);

SqlDataReader dr = cmd.ExecuteReader();

List<Company> compamyList = new List<Company>();

while (dr.Read())

{

Company company = new Company();

company.companyId = Convert.ToInt32(dr["CompanyId"]);

company.companyName = dr["CompanyName"].ToString();

company.webSite = dr["WebSite"].ToString();

compamyList.Add(company);

}

con.Close();

return compamyList;

}

}

}

This example retrieves data
from an SQL Server Database

Hans-Petter Halvorsen
University of South-Eastern Norway
www.usn.no

E-mail: hans.p.halvorsen@usn.no
Web: https://www.halvorsen.blog

http://www.usn.no/
mailto:hans.p.halvorsen@usn.no
https://www.halvorsen.blog/

	Start
	Slide 1
	Slide 2

	Introduction
	Slide 3
	Slide 4: Database Systems
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

	ERwin
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

	SQL Server
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

	LabVIEW
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

	Visual Studio
	Slide 47
	Slide 48
	Slide 49
	Slide 50

	WinForm
	Slide 51
	Slide 52
	Slide 53

	ASP.NET Core
	Slide 54
	Slide 55: ASP.NET Core
	Slide 56: ASP.NET Core Web App with Razor
	Slide 57
	Slide 58: Company Class

	Finished
	Slide 59

